If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20(y^2)=180
We move all terms to the left:
20(y^2)-(180)=0
a = 20; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·20·(-180)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120}{2*20}=\frac{-120}{40} =-3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120}{2*20}=\frac{120}{40} =3 $
| 20m+10-3(7+5m)=64 | | 3t-9+3=6t-15 | | 2(p+1-(-4)=0 | | -8(t+4)=-104 | | 2(p+1=-4 | | .25(x-5)=3.25 | | 10x-60x+20=10x+20-60 | | 6-3k-7=-9+5k | | 8n+12=2n+112 | | 9x+27+9x=x^2+3x | | 3/x+4/x-7/2×=3 | | 3(x+)+9(x-3)=-8x+11 | | 16=4(x+3)-6x | | -4(t+3)=-44 | | 4=x−12 | | 40m+60=-100 | | 8a2=-200 | | 3|x+1|+3=9 | | 3t+7=-11 | | 9w=w+7 | | 25=-13+h | | 3(3t+5)=4(4t-5) | | 9j=-54 | | 29=3n | | x+56=7 | | 6x+3=4×+13 | | v+54=6 | | 9w=w^2+7 | | .4(c+8.5)=18 | | 3x+1=2*9-5 | | v+2.51=9.69 | | (6+x)/2=x+2 |